4 years ago

Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition

Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition
To explore the origin of biomolecule homochirality in interstellar molecular clouds, enantiomer-selective photodissociation via chiral recognition between amino acids in the gas phase was examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of sodiated l-tryptophan ion, Na+(l-Trp), with an amino acid such as serine (Ser), threonine (Thr), or alanine (Ala) were obtained by the photo-excitation of l-Trp in the noncovalent complexes. Dissociation of l-Trp via CO2 loss occurred when it was noncovalently complexed with d-Ser or d-Thr in the presence of Na+. For the l-enantiomers, the energy absorbed by l-Trp was released through evaporation of l-Ser or l-Thr, and dissociation of the amino acids was suppressed. In contrast, the enantiomer-selective phenomenon was not observed in the noncovalent complex with Ala, suggesting that a side-chain OH group plays an important role in chiral recognition and enantiomer-selective photodissociation. The enantiomer-selective photodissociation was applied to the quantitative chiral analysis of amino acids. The enantiomeric excess of Ser and Thr in solution could be determined by measuring the relative abundance ratio of the enantiomer-selective photodissociation of Trp to amino acid evaporation in a single photodissociation mass spectrum obtained by photo-excitation of l-Trp used as a chiral probe in cold gas-phase noncovalent complexes with the analyte amino acids, and by referring to the linear relationships established in this work.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017304993

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.