3 years ago

Singlet Exciton Delocalization in Gold Nanoparticle-Tethered Poly(3-hexylthiophene) Nanofibers with Enhanced Intrachain Ordering

Singlet Exciton Delocalization in Gold Nanoparticle-Tethered Poly(3-hexylthiophene) Nanofibers with Enhanced Intrachain Ordering
Junsuk Rho, Hye Ryung Byun, Kilwon Cho, Dae Gun Kim, Boseok Kang, Hansol Lee, Dong Hun Sin, Hyomin Ko, Mun Seok Jeong, Sang Woo Kim, Sung Won Song, Dongki Lee, Woong Sung, Jungho Mun
We fabricated hybrid poly(3-hexylthiophene) nanofibers (P3HT NFs) with rigid backbone organization through the self-assembly of P3HT tethered to gold NPs (P3HT-Au NPs) in an azeotropic mixture of tetrahydrofuran and chloroform. We found that the rigidity of the P3HT chains derives from the tethering of the P3HT chains to the Au NPs and the control of the solubility of P3HT in the solvent. This unique nanostructure of hybrid P3HT NFs self-assembled in an azeotropic mixture exhibits significantly increased delocalization of singlet (S1) excitons compared to those of pristine and hybrid P3HT NFs self-assembled in a poor solvent for P3HT. This strategy for the self-assembly of P3HT-Au NPs that generate long-lived S1 excitons can also be applied to other crystalline conjugated polymers and NPs in various solvents and thus enables improvements in the efficiency of optoelectronic devices.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b01416

DOI: 10.1021/acs.macromol.7b01416

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.