3 years ago

Salt-tolerance aerobic granular sludge: Formation and microbial community characteristics

The salt-tolerance aerobic granular sludge (SAGS) dominated by moderately halophilic bacteria was successfully cultured in a 9% (w/v) salty, lab-scale sequence batch reactor (SBR) system. Influence of high salinity (0–9% w/v NaCl) on the formation, performance and microbial succession of the SAGS were explored. Crystal nucleus hypothesis, selection pressure hypothesis and compressed double electric layers hypothesis were used to discuss the formation mechanism of SAGS. Notably, salinity could be seen as a kind of selection pressure contributed to the formation of SAGS, while salinity also declined the performance of SAGS system. High throughput 16S rRNA gene analysis showed that the salinity had great influence on the species succession and community structure of SAGS. Moreover, Salinicola and Halomonas were dominant at 9% salt concentration, therefore moderate halophiles were identified as functional groups for the tolerance of hypersaline stress.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417312701

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.