3 years ago

Rotary and linear molecular motors driven by pulses of a chemical fuel

Sundus Erbas-Cakmak, Charlie T. McTernan, Daniel J. Tetlow, Stephen D. P. Fielden, David A. Leigh, Miriam R. Wilson, Ulvi Karaca

Many biomolecular motors catalyze the hydrolysis of chemical fuels, such as adenosine triphosphate, and use the energy released to direct motion through information ratchet mechanisms. Here we describe chemically-driven artificial rotary and linear molecular motors that operate through a fundamentally different type of mechanism. The directional rotation of [2]- and [3]catenane rotary molecular motors and the transport of substrates away from equilibrium by a linear molecular pump are induced by acid-base oscillations. The changes simultaneously switch the binding site affinities and the labilities of barriers on the track, creating an energy ratchet. The linear and rotary molecular motors are driven by aliquots of a chemical fuel, trichloroacetic acid. A single fuel pulse generates 360° unidirectional rotation of up to 87% of crown ethers in a [2]catenane rotary motor.

Publisher URL: http://science.sciencemag.org/cgi/content/short/358/6361/340

DOI: 10.1126/science.aao1377

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.