3 years ago

Novel Rotational Speed Modulation System Used With Venoarterial Extracorporeal Membrane Oxygenation

Femoral venoarterial extracorporeal membrane oxygenation (VA-ECMO) is widely used to maintain blood flow in patients with cardiogenic shock. However, retrograde blood flow increases left ventricular (LV) afterload during femoral VA-ECMO. Additional support by means of an intraaortic balloon pump (IABP) alleviates LV afterload but is associated with significant adverse events. We previously developed a system for rotational speed modulation in synchrony with the native cardiac cycle, for use with implantable continuous-flow LV assist devices. Here, we aimed to evaluate whether our novel rotation speed modulation system can improve coronary artery flow and reduce LV during femoral VA-ECMO. Methods VA-ECMO was installed by means of right atrial drainage and distal abdominal aortic perfusion in six adult goats. Cardiogenic shock was induced with β-adrenergic antagonist infusion. An IABP was placed in the descending aorta. LV stroke work, LV end-systolic pressure, and coronary arterial flow were evaluated. Data were collected under five conditions (modes): baseline, circuit-clamp (cardiogenic shock), continuous mode (constant rotational speed), counterpulse mode (increasing rotational speed during diastole), and continuous mode with IABP support. Results LV stroke work and LV end-systolic pressure tended to be lower in the counterpulse mode, indicating decreased LV work load and afterload in this mode. Furthermore, coronary arterial flow tended to be higher in the counterpulse mode. Conclusions Our system enabled an increase in coronary arterial flow and a decrease in LV work load and afterload during VA-ECMO. The system offers the effects of VA-ECMO and an IABP in a single device.

Publisher URL: www.sciencedirect.com/science

DOI: S0003497517306082

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.