3 years ago

Roles of mmu_piR_003399 in microcystin-leucine arginine (MC-LR)-induced reproductive toxicity in the spermatogonial cells and testis.

Xiaodong Han, Zou Xiang, Ling Zhang, Xiannan Meng, Dongmei Li
Our previous work has demonstrated that microcystin-leucine arginine (MC-LR) is a potent toxin for the reproductive system of male mice and it exerts cytotoxicity in spermatogonial cells, resulting in the constitutional and functional changes of the mouse testis. The present study was designed to investigate the functions of P-element-induced wimpy (piwi)-interacting RNAs (piRNAs) in MC-LR-induced reproductive toxicity in male mice. We observed an increase in the mmu_piR_003399 level in spermatogonial cells and mouse testicular tissues following treatment with MC-LR. Moreover, our data confirmed that cyclin-dependent kinase 6 (CDK6) was the target gene of mmu_piR_003399. Increases in the concentration of mmu_piR_003399 were correlated with the reduced expression of CDK6 both in vitro and in vivo. mmu_piR_003399 induced cell cycle arrest at the G1-phase, down-regulated sperm counts and sperm motility, and compromised sperm morphology. On the contrary, suppressing the expression of mmu_piR_003399 could substantially attenuate MC-LR-induced pathology in mice including cell cycle arrest, reduced mature sperm counts, sperm viability loss and abnormal sperm morphology. Furthermore, our data supported that mmu_piR_003399 existed in mouse serum and plasma, and its level was increased in MC-LR-treated mice. In conclusion, we demonstrate that mmu_piR_003399 plays a crucial role in regulating MC-LR-induced reproductive toxicity.

Publisher URL: http://doi.org/10.1093/toxsci/kfx209

DOI: 10.1093/toxsci/kfx209

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.