3 years ago

Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.

Chris-Carolin Schön, Simon Teyssèdre, Christina Lehermeier
A crucial step in plant breeding is the selection and combination of parents to form new crosses. Genome-based prediction guides the selection of high-performing parental lines in many crop breeding programs which ensures a high mean performance of progeny. To warrant maximum selection progress, a new cross should also provide a large progeny variance. The usefulness concept as measure of the gain that can be obtained from a specific cross accounts for variation in progeny variance. Here, it is shown that genetic gain can be considerably increased when crosses are selected based on their genomic usefulness criterion compared to selection based on mean genomic estimated breeding values. An efficient and improved method to predict the genetic variance of a cross based on Markov chain Monte Carlo samples of marker effects from a whole-genome regression model is suggested. In simulations representing selection procedures in crop breeding programs, the performance of this novel approach is compared with existing methods like selection based on mean genomic estimated breeding values and optimal haploid values. In all cases, higher genetic gain was obtained compared with previously suggested methods. When 1% of progenies per cross were selected, the genetic gain based on the estimated usefulness criterion increased by 0.14 genetic standard deviations compared to a selection based on mean genomic estimated breeding values. Analytical derivations of the progeny genotypic variance-covariance matrix based on parental genotypes and genetic map information make simulations of progeny dispensable and allow fast implementation in large-scale breeding programs.

Publisher URL: http://doi.org/10.1534/genetics.117.300403

DOI: 10.1534/genetics.117.300403

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.