4 years ago

Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice

Hypoxia-Induced Changes in the Fibroblast Secretome, Exosome, and Whole-Cell Proteome Using Cultured, Cardiac-Derived Cells Isolated from Neonatal Mice
Sina Hadipour-Lakmehsari, Jake Cosme, Anthony O. Gramolini, Andrew Emili, Hongbo Guo
Cardiac fibroblasts (CFs) represent a major subpopulation of cells in the developing and adult heart. Cardiomyocyte (CM) and CF intercellular communication occurs through paracrine interactions and modulate myocyte development and stress response. Detailed proteomic analysis of the CF secretome in normal and stressed conditions may offer insights into the role of CF in heart development and disease. Primary neonatal mouse CFs were isolated and cultured for 24 h in 21% (normoxic) or 2% (hypoxic) O2. Conditioned medium was separated to obtain exosomes (EXO) and EXO-depleted secretome fractions. Multidimensional protein identification technology was performed on secreted fractions. Whole cell lysate data were also generated to provide subcellular context to the secretome. Proteomic analysis identified 6163 unique proteins in total. Statistical (QSpec) analysis identified 494 proteins differentially expressed between fractions and oxygen conditions. Gene Ontology enrichment analysis revealed hypoxic conditions selectively increase expression of proteins with extracellular matrix and signaling annotations. Finally, we subjected CM pretreated with CF secreted factors to hypoxia/reoxygenation. Viability assays suggested altered viability due to CF-derived factors. CF secretome proteomics revealed differential expression based on mode of secretion and oxygen levels in vitro.

Publisher URL: http://dx.doi.org/10.1021/acs.jproteome.7b00144

DOI: 10.1021/acs.jproteome.7b00144

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.