3 years ago

The proteome of pus from human brain abscesses: host-derived neurotoxic proteins and the cell-type diversity of CNS pus.

Gustavo Antonio De Souza, Bjørnar Hassel, Daniel Dahlberg, Øyvind Voie, Maria Ekman Stensland, Jugoslav Ivanovic
OBJECTIVE What determines the extent of tissue destruction during brain abscess formation is not known. Pyogenic brain infections cause destruction of brain tissue that greatly exceeds the area occupied by microbes, as seen in experimental studies, pointing to cytotoxic factors other than microbes in pus. This study examined whether brain abscess pus contains cytotoxic proteins that might explain the extent of tissue destruction. METHODS Pus proteins from 20 human brain abscesses and, for comparison, 7 subdural empyemas were analyzed by proteomics mass spectrometry. Tissue destruction was determined from brain abscess volumes as measured by MRI. RESULTS Brain abscess volume correlated with extracellular pus levels of antibacterial proteins from neutrophils and macrophages: myeloperoxidase (r = 0.64), azurocidin (r = 0.61), lactotransferrin (r = 0.57), and cathelicidin (r = 0.52) (p values 0.002-0.018), suggesting an association between leukocytic activity and tissue damage. In contrast, perfringolysin O, a cytotoxic protein from Streptococcus intermedius that was detected in 16 patients, did not correlate with abscess volume (r = 0.12, p = 0.66). The median number of proteins identified in each pus sample was 870 (range 643-1094). Antibiotic or steroid treatment prior to pus evacuation did not reduce the number or levels of pus proteins. Some of the identified proteins have well-known neurotoxic effects, e.g., eosinophil cationic protein and nonsecretory ribonuclease (also known as eosinophil-derived neurotoxin). The cellular response to brain infection was highly complex, as reflected by the presence of proteins that were specific for neutrophils, eosinophils, macrophages, platelets, fibroblasts, or mast cells in addition to plasma and erythrocytic proteins. Other proteins (neurofilaments, myelin basic protein, and glial fibrillary acidic protein) were specific for brain cells and reflected damage to neurons, oligodendrocytes, and astrocytes, respectively. Pus from subdural empyemas had significantly higher levels of plasma proteins and lower levels of leukocytic proteins than pus from intracerebral abscesses, suggesting greater turnover of the extracellular fluid of empyemas and washout of pus constituents. CONCLUSIONS Brain abscess pus contains leukocytic proteins that are neurotoxic and likely participate actively in the excessive tissue destruction inherent in brain abscess formation. These findings underscore the importance of rapid evacuation of brain abscess pus.

Publisher URL: http://doi.org/10.3171/2017.4.JNS17284

DOI: 10.3171/2017.4.JNS17284

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.