3 years ago

Antibiotic Resistance Genes and Associated Microbial Community Conditions in Aging Landfill Systems

Antibiotic Resistance Genes and Associated Microbial Community Conditions in Aging Landfill Systems
managing.editor@est.acs.org (American Chemical Society)
Landfills receive about 350 million tons of municipal solid wastes (MSWs) per year globally, including antibiotics and other coselecting agents that impact antimicrobial resistance (AMR). However, little is known about AMR in landfills, especially as a function of landfill ages. Here we quantified antibiotics, heavy metals, and AMR genes (ARGs) in refuse and leachates from landfills of different age (<3, 10, and >20 years). Antibiotics levels were consistently lower in refuse and leachates from older landfills, whereas ARG levels in leachates significantly increased with landfill age (One-way ANOVA, F = 10.8, P < 0.01). Heavy metals whose contents increased as landfills age (one-way ANOVA, F = 12.3, P < 0.01) were significantly correlated with elevated levels of ARGs (Mantel test, R = 0.66, P < 0.01) in leachates, which implies greater AMR exposure risks around older landfills. To further explain ARGs distributional mechanisms with age, microbial communities, mobile genetic elements (MGEs) and environmental factors were contrasted between refuse and leachate samples. Microbial communities in the refuse were closely correlated with ARG contents (Procrustes test; M2 = 0.37, R = 0.86, P < 0.001), whereas ARG in leachates were more associated with MGEs.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b03797

DOI: 10.1021/acs.est.7b03797

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.