5 years ago

Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry

Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry
A novel flowing liquid cathode glow discharge (LCGD) was developed as an excitation source of the atomic emission spectrometry (AES) for the determination of Ca and Zn in digested calcium and zinc gluconates oral solution and blood samples, in which the glow discharge is produced between the electrolyte (as cathode) overflowing from a quartz capillary and the needle-like Pt anode. The electron temperature and electron density of LCGD were calculated at different discharge voltages. The discharge stability and parameters affecting the LCGD were investigated in detail. In addition, the measured results of real samples using LCGD-AES were verified by ICP-AES. The results showed that the optimized analytical conditions are pH = 1 HNO3 as supporting electrolyte, 4.5mLmin–1 solution flow rate. The power consumption of LCGD is 43.5–66.0W. The R 2 and the RSD ranged from 630 to 680V are 0.9942–0.9995 and 0.49%–2.43%, respectively. The limits of detections (LODs) for Zn and Ca are 0.014–0.033 and 0.011–0.097mgL–1, respectively, which are in good agreement with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). The obtained results of Ca and Zn in real samples by LCGD-AES are basically consistent with the ICP-AES and reference value. The results suggested that LCGD-AES can provide an alternative analytical method for the detection of metal elements in biological and medical samples.

Publisher URL: www.sciencedirect.com/science

DOI: S0039914017307646

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.