3 years ago

Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes

Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes
We report on selective separation of monovalent and divalent cations (Na+ and Mg2+) and anions (Cl and SO4 2) from aqueous solutions using the flow electrode capacitive deionization (FCDI) process, operated with ion-exchange and nanofiltration membranes (NF). For the selective separation of cations and anions the FCDI module was operated with an NF membrane (NF270) and an anion-exchange or cation-exchange membrane, respectively, at varying applied cell potentials (0.6, 0.8 and 1.23V) and initial mono- to di-valent ions molar concentration ratios of 1, 10 and 20. The permselectivity of the NF270 membrane, calculated as a ratio between measured ionic fluxes, was found highly dependent on the initial molar concentration ratios of the mono- to the di-valent ions. Concentration-normalized Na+ to Mg2+ permselectivity was 0.69–1.04, indicating that the NF270 membrane does not pose selectivity for the separation of sodium and magnesium in the studied process. Conversely, the concentration-normalized permselectivity between Cl and SO4 2 was found between 1.28 and 7.03 depending on the applied cell potential, indicating high potential for implementing the proposed NF-FCDI method for selective separation of anions.

Publisher URL: www.sciencedirect.com/science

DOI: S0011916417316338

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.