3 years ago

Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach.

José Tomas Ramos, Alberto Cobos, África Holguín, Patricia Rojas Sánchez, Israel Pagán, Marisa Navaro
Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (dN, dS) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for dN and the year of HIV-1 diagnosis for ds. The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients.

Publisher URL: http://doi.org/10.1093/gbe/evx193

DOI: 10.1093/gbe/evx193

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.