5 years ago

Novel imidazole fluorescent poly(ionic liquid) nanoparticles for selective and sensitive determination of pyrogallol

Novel imidazole fluorescent poly(ionic liquid) nanoparticles for selective and sensitive determination of pyrogallol
This paper reports novel imidazole fluorescent poly(ionic liquid) nanoparticles (FPILNs) of poly(1-[(4-methyphenyl)methyl]-3-vinyl-imidazolium bromide (poly([MVI]Br) for selective and sensitive determination of pyrogallol. An imidazole ionic liquid of 1-[(4-methyphenyl)methyl]-3-vinyl-imidazolium bromide ([MVI]Br) was synthesized and used as the only monomer to obtain poly([MVI]Br) possessing phenyl fluorophores using a radical polymerization technique. The obtained poly([MVI]Br) can form nanoparticles in water. Scanning electron microscopy and dynamic light scattering results revealed majority of poly([MVI]Br) FPILNs with diameters ranging from 40 to 400nm. Although [MVI]Br showed weak fluorescence intensity, poly([MVI]Br) FPILNs exhibited strong fluorescence intensity with a quantum yield of 0.192, which is attributed to the presence of significant number of phenyl fluorophores and rigid construction. The selective and sensitive determination of pyrogallol was achieved through fluorescence quenching of poly([MVI]Br) FPILNs, and the quenching was attributed to the oxidation of poly([MVI]Br) FPILNs by O2˙¯ produced by pyrogallol autoxidation. The poly([MVI]Br) FPILNs-based sensor demonstrated a good linear relationship between the extent of fluorescence quenching and the concentration of pyrogallol in a range of 0.05 – 10.0μM, achieving a detection limit of 0.01μM. Furthermore, the poly([MVI]Br) FPILNs-based assay detected pyrogallol in environmental water samples, suggesting its potential to be applied for practical purposes.

Publisher URL: www.sciencedirect.com/science

DOI: S0039914017306380

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.