5 years ago

Sequential determination of nickel and cadmium in tobacco, molasses and refill solutions for e-cigarettes samples by molecular fluorescence

Sequential determination of nickel and cadmium in tobacco, molasses and refill solutions for e-cigarettes samples by molecular fluorescence
In this work, a new procedure was developed for separation and preconcentration of nickel(II) and cadmium(II) in several and varied tobacco samples. Tobacco samples were selected considering the main products consumed by segments of the population, in particular the age (youth) and lifestyle of the consumer. To guarantee representative samples, a randomized strategy of sampling was used. In the first step, a chemofiltration on nylon membrane is carried out employing eosin (Eo) and carbon nanotubes dispersed in sodium dodecylsulfate (SDS) solution (phosphate buffer pH 7). In this condition, Ni(II) was selectively retained on the solid support. After that, the filtrate liquid with Cd(II) was re-conditioned with acetic acid /acetate buffer solution (pH 5) and followed by detection. A spectrofluorimetric determination of both metals was carried out, on the solid support and the filtered aqueous solution, for Ni(II) and Cd(II), respectively. The solid surface fluorescence (SSF) determination was performed at λ em = 545nm (λ ex = 515nm) for Ni(II)-Eo complex and the fluorescence of Cd(II)-Eo was quantified in aqueous solution using λ em = 565nm (λ ex = 540nm). The calibration graphs resulted linear in a range of 0.058–29.35μgL−1 for Ni(II) and 0.124–56.20μgL−1 for Cd(II), with detection limits of 0.019 and 0.041μgL−1 (S/N = 3). The developed methodology shows good sensitivity and adequate selectivity, and it was successfully applied to the determination of trace amounts of nickel and cadmium present in tobacco samples (refill solutions for e-cigarettes, snuff used in narguille (molasses) and traditional tobacco) with satisfactory results. The new methodology was validated by ICP-MS with adequate agreement. The proposed methodology represents a novel fluorescence application to Ni(II) and Cd(II) quantification with sensitivity and accuracy similar to atomic spectroscopies, introducing for the first time the quenching effect on SSF.

Publisher URL: www.sciencedirect.com/science

DOI: S0039914017306458

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.