3 years ago

Construction of an infectious Macrobrachium rosenbergii nodavirus from cDNA clones in Sf9 cells and improved recovery of viral RNA with AZT treatment

Macrobrachium rosenbergii nodavirus (MrNV) is usually accompanied by extra small virus (XSV) in natural outbreaks of white tail disease (WTD) in the giant river prawn Macrobrachium rosenbergii. Testing the virulence of MrNV alone has been problematic due to the difficulty in completely separating XSV from MrNV by viral purification steps from naturally infected shrimp. However, based on reports of natural M. rosenbergii specimens from WTD outbreak ponds that were positive for MrNV but negative for XSV led us to hypothesize that MrNV alone might cause WTD. To test this hypothesis, we prepared the two, complete genomic RNA fragments (RNA1 and RNA2) of MrNV from cDNA clones and used these to transfect Sf9 cells that subsequently showed cellular changes, including cell swelling, syncytial cell formation, and development of cytoplasmic inclusions within 72h post-transfection. Replication of RNA1 and RNA2 increased in the transfected cells and transmission electron microscopy of the cell lysates revealed the presence of icosahedral viral-like particles that were 40–50nm in diameter. When naïve Sf9 cells were inoculated with the cell lysate, the newly infected cells showed cellular changes and produced strong immunoreactivity against MrNV capsid protein indicating the infectious nature of the cell lysate. When the lysates were injected into the whiteleg shrimp Penaeus vannamei, MrNV RNA replication in the shrimp was followed by morality accompanied by typical MrNV lesions that gave possible positive immunohistochemical reactions for the MrNV capsid protein. Treatment of the Sf9 cells with azidothymidine triphosphate (AZT) prior to transfection significantly increased viral RNA synthesis and pathogenicity when compared with untreated, transfected cells. Using this model to produce infectious MrNV without XSV contamination proves that MrNV alone can be lethal to shrimp and it opens the way to further investigate the molecular basis of MrNV pathogenesis, and to develop antiviral strategy to control white tail disease.

Publisher URL: www.sciencedirect.com/science

DOI: S0044848617318562

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.