3 years ago

Structure-Based Design and Synthesis of New Estrane–Pyridine Derivatives as Cytochrome P450 (CYP) 1B1 Inhibitors

Structure-Based Design and Synthesis of New Estrane–Pyridine Derivatives as Cytochrome P450 (CYP) 1B1 Inhibitors
Jenny Roy, Francisco Cortés-Benítez, Raphaël Dutour, Donald Poirier
Inhibition of cytochrome P450 (CYP) 1B1 is a promising therapeutic strategy, as such an inhibitor could modulate the bioactivation of procarcinogens while reducing drug resistance. Based on docking studies, the synthesis of 12 estra-1,3,5(10)-triene derivatives containing a pyridin-3-/4-yl moiety at position C2, C3, or C4 was performed, and we measured their inhibitory activity on CYP1B1 using the ethoxyresorufin-O-deethylase (EROD) assay. The position of the nitrogen atom in the aromatic ring has little influence on their inhibition potency, but compounds with a pyridinyl at C2 of the steroid nucleus are more potent CYP1B1 inhibitors than those with a pyridinyl at C3 or C4. Estradiol derivatives (OH at C17β) are also 10-fold more potent inhibitors than estrone derivatives (carbonyl at C17). Thus, 2-(pyridin-3-yl)-estradiol (4a) is the best CYP1B1 inhibitor (IC50 = 0.011 μM) from this series of compounds, and the best steroid inhibitor reported until now. It is also 7.5-fold more potent than the well-known nonsteroidal CYP1B1 inhibitor α-naphthoflavone (IC50 = 0.083 μM).

Publisher URL: http://dx.doi.org/10.1021/acsmedchemlett.7b00265

DOI: 10.1021/acsmedchemlett.7b00265

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.