3 years ago

Characterization of Gradient Dominance and Regularity Conditions for Neural Networks.

Yi Zhou, Yingbin Liang

The past decade has witnessed a successful application of deep learning to solving many challenging problems in machine learning and artificial intelligence. However, the loss functions of deep neural networks (especially nonlinear networks) are still far from being well understood from a theoretical aspect. In this paper, we enrich the current understanding of the landscape of the square loss functions for three types of neural networks. Specifically, when the parameter matrices are square, we provide an explicit characterization of the global minimizers for linear networks, linear residual networks, and nonlinear networks with one hidden layer. Then, we establish two quadratic types of landscape properties for the square loss of these neural networks, i.e., the gradient dominance condition within the neighborhood of their full rank global minimizers, and the regularity condition along certain directions and within the neighborhood of their global minimizers. These two landscape properties are desirable for the optimization around the global minimizers of the loss function for these neural networks.

Publisher URL: http://arxiv.org/abs/1710.06910

DOI: arXiv:1710.06910v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.