3 years ago

LiDAR and Inertial Fusion for Pose Estimation by Non-linear Optimization.

Haoyang Ye, Ming Liu

Pose estimation purely based on 3D point-cloud could suffer from degradation, e.g. scan blocks or scans in repetitive environments. To deal with this problem, we propose an approach for fusing 3D spinning LiDAR and IMU to estimate the ego-motion of the sensor body. The main idea of our work is to optimize the poses and states of two kinds of sensors with non-linear optimization methods. On the one hand, a bunch of IMU measurements are considered as a relative constraint using pre-integration and the state errors can be minimized with the help of laser pose estimation and non-linear optimization algorithms; on the other hand, the optimized IMU pose outputs can provide a better initial for the subsequent point-cloud matching. The method is evaluated under both simulation and real tests with comparison to the state-of-the-art. The results show that the proposed method can provide better pose estimation performance even in the degradation cases.

Publisher URL: http://arxiv.org/abs/1710.07104

DOI: arXiv:1710.07104v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.