3 years ago

The impact of sequential H2-CO-H2 activation treatment on the structure and performance of cobalt based catalysts for the Fischer-Tropsch synthesis

The impact of sequential H2-CO-H2 activation treatment on the structure and performance of cobalt based catalysts for the Fischer-Tropsch synthesis
Different activation protocols were applied to a promoted Re/Co/γ-Al2O3 catalyst for Fischer-Tropsch synthesis. The activation included treatment in either pure H2 or a sequence of Reduction (H2) – Carburization (CO) – Reduction (H2) in order to vary the microstructure of Co nanoparticles and investigate their performance. The alternative activation protocol applied under specific conditions (carburization at 230°C and final reduction at 350°C) outperform the conventional activation both in terms of catalyst activity and C5+ selectivity. The catalyst was characterized in all the stages of the activation process by synchrotron based X-ray diffraction (XRD) and X-ray absorption near edge structure spectroscopy (XANES). The effect of air exposure at room temperature of the carburized sample was investigated and it was found that air exposure leads to minor phase changes that significantly affect catalyst performance. Carburization temperature and temperature used for the decomposition of the carbide on the final reduction step both had a severe effect on catalyst performance, but neither of them influenced considerably the microstructure of Co nanoparticles that was primarily hexagonal (hcp). All carburized samples contained a significant amount of carbon as observed by Thermogravimetric analysis (TGA) and Raman spectroscopy. The final reduction step could remove part of the excess carbon produced during CO disproportionation. It appears that the carbon removal\minimization is a key factor for the exploitation of the benefits of hcp configuration of Co nanoparticles catalysing Fischer-Tropsch synthesis.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X17304957

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.