3 years ago

A Membrane Lung Design Based on Circular Blood Flow Paths

A Membrane Lung Design Based on Circular Blood Flow Paths
Hirschl, Ronald B., Toomasian, John, Schlanstein, Peter, Fernando, Uditha Piyumindri, Thompson, Alex J., Cheriyan, Hannah, Bull, Joseph L., Arens, Jutta, Bartlett, Robert H., Kaesler, Andreas, Potkay, Joseph
Current hollow fiber membrane lungs feature a predominantly straight blood path length across the fiber bundle, resulting in limited O2 transfer efficiency because of the diffusion boundary layer effect. Using computational fluid dynamics and optical flow visualization methods, a hollow fiber membrane lung was designed comprising unique concentric circular blood flow paths connected by gates. The prototype lung, comprising a fiber surface area of 0.28 m2, has a rated flow of 2 L/min, and the oxygenation efficiency is 357 ml/min/m2. The CO2 clearance of the lung is 200 ml/min at the rated blood flow. Given its high gas transfer efficiency, as well as its compact size, low priming volume, and propensity for minimal thrombogenicity, this lung design has the potential to be used in a range of acute and chronic respiratory support applications, including providing total respiratory support for infants and small children and CO2 clearance in adults.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.