3 years ago

Site- and Stereoselective Chemical Editing of Thiostrepton by Rh-Catalyzed Conjugate Arylation: New Analogues and Collateral Enantioselective Synthesis of Amino Acids

Site- and Stereoselective Chemical Editing of Thiostrepton by Rh-Catalyzed Conjugate Arylation: New Analogues and Collateral Enantioselective Synthesis of Amino Acids
Scott J. Miller, Hanna M. Key
The synthesis of complex, biologically active molecules by catalyst-controlled, selective functionalization of complex molecules is an emerging capability. We describe the application of Rh-catalyzed conjugate arylation to the modification of thiostrepton, a complex molecule with potent antibacterial properties for which few analogues are known. By this approach, we achieve the site- and stereoselective functionalization of one subterminal dehydroalanine residue (Dha16) present in thiostrepton. The broad scope of this method enabled the preparation and isolation of 24 new analogues of thiostrepton, the biological testing of which revealed that the antimicrobial activity of thiostrepton tolerates the alteration of Dha16 to a range of amino acids. Further analysis of this Rh-catalyzed process revealed that use of sodium or potassium salts was crucial for achieving high stereoselectivity. The catalyst system was studied further by application to the synthesis of amino esters and amides from dehydroalanine monomers, a process which was found to occur with up to 93:7 er under conditions milder than those previously reported for analogous reactions. Furthermore, the addition of the same sodium and potassium salts as applied in the case of thiostrepton leads to a nearly full reversal of the enantioselectivity of the reaction. As such, this study of site-selective catalysis in a complex molecular setting also delivered synergistic insights in the arena of enantioselective catalysis. In addition, these studies greatly expand the number of known thiostrepton analogues obtained by any method and reveal a high level of functional group tolerance for metal-catalyzed, site-selective modifications of highly complex natural products.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b08775

DOI: 10.1021/jacs.7b08775

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.