3 years ago

Construction of Antithrombotic Tissue-Engineered Blood Vessel via Reduced Graphene Oxide Based Dual-Enzyme Biomimetic Cascade

Construction of Antithrombotic Tissue-Engineered Blood Vessel via Reduced Graphene Oxide Based Dual-Enzyme Biomimetic Cascade
Ge Liu, Wen Zeng, Gang Li, Yanzhao Li, Lingqin Zeng, Mingcan Yang, Ge Guan, Keyu Wei, Da Huo, Yuxin Wang, Jingyuan Yang, Chuhong Zhu
Thrombosis is one of the biggest obstacles in the clinical application of small-diameter tissue-engineered blood vessels (TEBVs). The implantation of an unmodified TEBV will lead to platelet aggregation and further activation of the coagulation cascade, in which the high concentration of adenosine diphosphate (ADP) that is released by platelets plays an important role. Inspired by the phenomenon that endothelial cells continuously generate endogenous antiplatelet substances via enzymatic reactions, we designed a reduced graphene oxide (RGO) based dual-enzyme biomimetic cascade to successively convert ADP into adenosine monophosphate (AMP) and AMP into adenosine. We used RGO as a support and bound apyrase and 5′-nucleotidase (5′-NT) on the surface of RGO through covalent bonds, and then, we modified the surface of the collagen-coated decellularized vascular matrix with the RGO-enzyme complexes, in which RGO functions as a platform with a large open surface area and minimal diffusion barriers for substrates/products to integrate two catalytic systems for cascading reactions. The experimental results demonstrate that the two enzymes can synergistically catalyze procoagulant ADP into anticoagulant AMP and adenosine successively under physiological conditions, thus reducing the concentration of ADP. AMP and adenosine can weaken or even reverse the platelet aggregation induced by ADP, thereby inhibiting thrombosis. Adenosine can also accelerate the endothelialization of TEBVs by regulating cellular energy metabolism and optimizing the microenvironment, thus ensuring the antithrombotic function and patency of TEBVs even after the RGO-enzyme complex loses its activity.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04836

DOI: 10.1021/acsnano.7b04836

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.