3 years ago

Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO–Solvent Gap

Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO–Solvent Gap
Marta C. Figueiredo, Kathleen A. Schwarz, Ravishankar Sundararaman, Marc T. M. Koper
The distribution of electric fields within the electrochemical double layer depends on both the electrode and electrolyte in complex ways. These fields strongly influence chemical dynamics in the electrode–electrolyte interface but cannot be measured directly with submolecular resolution. We report experimental capacitance measurements for aqueous interfaces of CO-terminated Pt(111). By comparing these measurements with first-principles density functional theory (DFT) calculations, we infer microscopic field distributions and decompose contributions to the inverse capacitance from various spatial regions of the interface. We find that the CO is strongly electronically coupled to the Pt and that most of the interfacial potential difference appears across the gap between the terminating O and water and not across the CO molecule, as previously hypothesized. This “gap capacitance” resulting from hydrophobic termination lowers the overall capacitance of the aqueous Pt–CO interface and makes it less sensitive to electrolyte concentration compared to the bare metal.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02383

DOI: 10.1021/acs.jpclett.7b02383

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.