3 years ago

Improving the Redox Response Stability of Ceria-Zirconia Nanocatalysts under Harsh Temperature Conditions

Improving the Redox Response Stability of Ceria-Zirconia Nanocatalysts under Harsh Temperature Conditions
Miguel A. Cauqui, Carolina Arias-Duque, José J. Calvino, Juan C. Hernández-Garrido, José A. Pérez-Omil, Eva Bladt, Miguel A. Muñoz, Sara Bals, José M. Rodríguez-Izquierdo, María P. Yeste, Ginesa Blanco
By depositing ceria on the surface of yttrium-stabilized zirconia (YSZ) nanocrystals and further activation under high-temperature reducing conditions, a 13% mol. CeO2/YSZ catalyst structured as subnanometer thick, pyrochlore-type, ceria-zirconia islands has been prepared. This nanostructured catalyst depicts not only high oxygen storage capacity (OSC) values but, more importantly, an outstandingly stable redox response upon oxidation and reduction treatments at very high temperatures, above 1000 °C. This behavior largely improves that observed on conventional ceria-zirconia solid solutions, not only of the same composition but also of those with much higher molar cerium contents. Advanced scanning transmission electron microscopy (STEM-XEDS) studies have revealed as key not only to detect the actual state of the lanthanide in this novel nanocatalyst but also to rationalize its unusual resistance to redox deactivation at very high temperatures. In particular, high-resolution X-ray dispersive energy studies have revealed the presence of unique bilayer ceria islands on top of the surface of YSZ nanocrystals, which remain at surface positions upon oxidation and reduction treatments up to 1000 °C. Diffusion of ceria into the bulk of these crystallites upon oxidation at 1100 °C irreversibly deteriorates both the reducibility and OSC of this nanostructured catalyst.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b03336

DOI: 10.1021/acs.chemmater.7b03336

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.