3 years ago

Atomistic simulations of nanoscale crack-vacancy interaction in graphene

Atomistic simulations of nanoscale crack-vacancy interaction in graphene
Linear elastic fracture mechanics establishes the conditions necessary for crack arrest by the introduction of a hole in its path. However, it is unclear how nanoscale crack-vacancy interaction manifests itself at the atomistic level. In this study, we employ molecular dynamics simulations to investigate the nanoscale crack-vacancy interaction in graphene by performing nanoscale uniaxial tensile test. Three aspects of the study are considered: (i) to create design envelopes to ascertain crack tip shielding zones (reduction in the stress field) and crack tip amplification zones (increase in the stress field) as a result of the presence of atomistic vacancies ahead of the crack tip, (ii) to examine the ability of the current system to arrest propagating cracks by the strategic placement of the nanoscale vacancies, and (iii) to investigate the crack healing phenomenon. Our results reveal that the nanoscale central crack can be arrested by the strategic positioning of symmetric nanoscale holes. Moreover, the presence of holes in close proximity to the crack tip leads to multiple stage crack growth involving both self-similar and crack branching. The study further reveals that the initially propagating cracks completely healed even though the applied tensile strain is not fully diminished.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622317308928

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.