3 years ago

IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy

IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy
In this study, we propose using IR 780-loaded, CD44-targeted hyaluronic acid-based micelles (HA-IR 780) for enhanced photothermal therapy (PTT) effects in tumors. Two kinds of HA-C18 micelles were synthesized from different C18 feed ratios with degree of substitution of 3% and 13% respectively. Three different IR 780 weight percentages were used for micelle formation with loading content of 4.6%, 7.9%, and 10.3% respectively. The IC50 value of HA-IR 780 in TC1 cells was 21.89μgmL−1 (32.81μM). Upon irradiation of the tumor site with an 808-nm laser (2Wcm−2) for 2min, the temperature in the tumor in the HA-IR 780-treated groups reached 49.9°C which exceeds the temperature threshold to induce irreversible tissue damage. Toxicity studies showed that HA-IR 780 does not cause any adverse effects in organs, including heart, liver, lungs, kidney and spleen, although it selectively caused cell damage in the tumor region upon laser irradiation. Therefore, the present study suggests that HA-IR 780 can cause selective cell death in tumor regions due to its enhanced tumor-targeting and photothermal capabilities.

Publisher URL: www.sciencedirect.com/science

DOI: S0144861717311797

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.