3 years ago

Polycomb group RING finger protein 3/5 activate transcription via an interaction with the pluripotency factor Tex10 in embryonic stem cells.

Yin Xia, Yikai Huang, Qing Jiang, Ning Cao, Chaojun Li, Wukui Zhao, Mengjie Liu, Jingzi Zhang, Congcong Wang, Jinzhong Qin, Haijing Ji
Polycomb group (PcG) proteins are epigenetic transcriptional repressors that orchestrate numerous developmental processes and have been implicated in the maintenance of embryonic stem (ES) cell state. More recent evidence suggests that a subset of PcG proteins engages in transcriptional activation in some cellular contexts. But how this property is exerted remains largely unknown. Here, we generated ES cells with single or combined disruption of Polycomb group RING finger protein 3 (Pcgf3) and Pcgf5 with the CRISPR-Cas9 technique. We report that although these mutant cells maintained their self-renewal and colony-forming capacity, they displayed severe defects in mesoderm differentiation in vitro and in vivo. Using RNA-Seq to analyze transcriptional profiles of ES cells with single or combined Pcgf3/5 deficiencies, we found that in contrast to the canonical role of the related polycomb repressive complex 1 (PRC1) in gene repression, Pcgf3/5 mainly function as transcriptional activators driving expression of many genes involved in mesoderm differentiation. Proteomic approaches and promoter occupancy analyses helped establish an extended Pcgf3/5 interactome and identified several novel Pcgf3/5 interactors. These included testis expressed 10 (Tex10), which may directly contribute to transcriptional activation via the transcriptional co-activator P300. Furthermore, Pcgf3/5 deletion in ES cells substantially reduced the occupancy of Tex10 and P300 at target genes. Finally, we demonstrated that Pcgf3/5 are essential for regulating global levels of the histone modifier H2AK119ub1 in ES cells. Our findings establish Pcgf3/5 as transcriptional activators that interact with Tex10 and P300 in ES cells and point to redundant activity of Pcgf3/5 in pluripotency maintenance.

Publisher URL: http://doi.org/10.1074/jbc.M117.804054

DOI: 10.1074/jbc.M117.804054

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.