3 years ago

Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods

Subacute oral toxicity assessment of benalaxyl in mice based on metabolomics methods
In this study, the metabolic responses of mice after 30 days of exposure to benalaxyl were assessed using NMR-based untargeted metabolomics and LC-MS-based targeted profiling of 20 amino acids. Urinary 1H NMR analyses revealed alterations in energy metabolism, lipid metabolism, vitamin B metabolism, the urea cycle and amino acid metabolism, and targeted analyses indicated that the serum levels of asparagine, histidine, lysine and aspartic acid were significantly altered. Additionally, significant oxidative stress was observed in the liver and kidney, although no apparent histopathological injury was observed. The tissue distribution indicated a significant stereoselectivity in the brain, where (−)-R-benalaxyl was enriched. These data provide a comprehensive picture of the subacute toxic effects of benalaxyl in mice. The results of this study suggested that, for a toxicity evaluation, metabolomics analysis is much more sensitive than traditional toxicological methods. The results also highlight the combined use of untargeted and targeted metabolomics approaches in evaluating the health risks of xenobiotics.

Publisher URL: www.sciencedirect.com/science

DOI: S0045653517316703

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.