5 years ago

Path-integral approach for nonequilibrium multi-time correlation functions of open quantum systems coupled to Markovian and non-Markovian environments.

Florian Ungar, Alexei Vagov, Michael Cosacchi, Moritz Cygorek, Andreas M. Barth, Vollrath Martin Axt

Using a real-time path integral approach we develop an algorithm to calculate multi-time correlation functions of open few-level quantum systems that is applicable to highly nonequilibrium dynamics. The calculational scheme fully keeps the non-Markovian memory introduced by the pure-dephasing type coupling to a continuum of oscillators. Furthermore, we discuss how to deal consistently with the simultaneous presence of non-Markovian and Markovian system reservoir interactions. We apply the method to a crucial test case, namely the evaluation of emission spectra of a laser-driven two-level quantum dot coupled to a continuum of longitudinal acoustic phonons, which give rise to non-Markovian dynamics. Here, we also account for the coupling to a photonic environment, which models radiative decay and can be treated as a Markovian bath. The phonon side bands are found on the correct side of the zero phonon line in our calculation, in contrast to known results where the quantum regression theorem is applied naively to non-Markovian dynamics. Combining our algorithm with a recently improved iteration scheme for performing the required sum over paths we demonstrate the numerical feasibility of our approach to systems with more than two levels. Results are shown for the second-order photonic two-time correlation function of a quantum dot-cavity system with seven states on the Jaynes-Cummings ladder taken into account.

Publisher URL: http://arxiv.org/abs/1806.11203

DOI: arXiv:1806.11203v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.