3 years ago

Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change

Surface Urban Heat Island (SUHI) is an urban climate phenomenon that is expected to respond to future climate and land-use land-cover change. It is important to further our understanding of physical mechanisms that govern SUHI phenomenon to enhance our ability to model future SUHI characteristics under changing geophysical conditions. In this study, SUHI phenomenon is quantified and modelled at 20 cities distributed across Canada. By analyzing MODerate Resolution Imaging Spectroradiometer (MODIS) sensed surface temperature at the cities over 2002–2012, it is found that 16 out of 20 selected cities have experienced a positive SUHI phenomenon while 4 cities located in the prairies region and high elevation locations have experienced a negative SUHI phenomenon in the past. A statistically significant relationship between observed SUHI magnitude and city elevation is also recorded over the observational period. A Physical Scaling downscaling model is then validated and used to downscale future surface temperature projections from 3 GCMs and 2 extreme Representative Concentration Pathways in the urban and rural areas of the cities. Future changes in SUHI magnitudes between historical (2006–2015) and future timelines: 2030s (2026–2035), 2050s (2046–2055), and 2090s (2091–2100) are estimated. Analysis of future projected changes indicate that 15 (13) out of 20 cities can be expected to experience increases in SUHI magnitudes in future under RCP 2.6 (RCP 8.5). A statistically significant relationship between projected future SUHI change and current size of the cities is also obtained. The study highlights the role of city properties (i.e. its size, elevation, and surrounding land-cover) towards shaping their current and future SUHI characteristics. The results from this analysis will help decision-makers to manage Canadian cities more efficiently under rapidly changing geophysical and demographical conditions.

Publisher URL: www.sciencedirect.com/science

DOI: S0301479717309805

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.