3 years ago

Data-driven hierarchical control for online energy management of plug-in hybrid electric city bus

The pre-determined city bus routes and the availability of partial-trip information obtained through vehicular connectivity provides new opportunities for plug-in vehicles to plan electric energy reasonably. This paper presents a data-driven hierarchical control method for online energy management of plug-in hybrid electric city buses, which can learn from globally optimal solutions based on historical accumulated cycles while taking advantage of connectivity-enabled partial-trip information. The devised scheme comprises two levels of control modules. The upper battery state-of-charge planner trained using historical optimal data is employed for deriving a reference state-of-charge based on the current battery state, remaining trip length, and low/high speed ratios. The lower powertrain controller is then applied to regulate the engine operation according to the reference state-of-charge and powertrain states. This article presents two contributions: (1) both accumulated historical optimal data and partial-trip information are assimilated to augment the applicability of the control hierarchy, thus achieving better resilience to “unseen” driving patterns; (2) given limited resources of micro-controllers, the control strategy is proven to be a real-time implementable, close-to-optimal solution. A variety of results show that the proposed approach can achieve significant fuel savings (4.99%–14.80%) as compared to the charge depleting and charge sustaining strategy.

Publisher URL: www.sciencedirect.com/science

DOI: S0360544217315682

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.