3 years ago

Generalized Zero-Shot Learning for Action Recognition with Web-Scale Video Data.

Wu Liu, Xiongxiong Dong, Kun Liu, Huadong Ma, Wenbing Huang

Action recognition in surveillance video makes our life safer by detecting the criminal events or predicting violent emergencies. However, efficient action recognition is not free of difficulty. First, there are so many action classes in daily life that we cannot pre-define all possible action classes beforehand. Moreover, it is very hard to collect real-word videos for certain particular actions such as steal and street fight due to legal restrictions and privacy protection. These challenges make existing data-driven recognition methods insufficient to attain desired performance. Zero-shot learning is potential to be applied to solve these issues since it can perform classification without positive example. Nevertheless, current zero-shot learning algorithms have been studied under the unreasonable setting where seen classes are absent during the testing phase. Motivated by this, we study the task of action recognition in surveillance video under a more realistic \emph{generalized zero-shot setting}, where testing data contains both seen and unseen classes. To our best knowledge, this is the first work to study video action recognition under the generalized zero-shot setting. We firstly perform extensive empirical studies on several existing zero-shot leaning approaches under this new setting on a web-scale video data. Our experimental results demonstrate that, under the generalize setting, typical zero-shot learning methods are no longer effective for the dataset we applied. Then, we propose a method for action recognition by deploying generalized zero-shot learning, which transfers the knowledge of web video to detect the anomalous actions in surveillance videos. To verify the effectiveness of our proposed method, we further construct a new surveillance video dataset consisting of nine action classes related to the public safety situation.

Publisher URL: http://arxiv.org/abs/1710.07455

DOI: arXiv:1710.07455v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.