5 years ago

Characterization of β-lactamase activity using isothermal titration calorimetry

Characterization of β-lactamase activity using isothermal titration calorimetry
Hydrolysis of β-lactam antibiotic by β-lactamase is the most common mechanism of β-lactam resistance in clinical isolates. Timely detection and characterization of β-lactamases are therefore of utmost biomedical importance. Conventional spectrophotometric method is time-consuming and cannot provide thermodynamic information on β-lactamases. Methods A new assay was developed for the study of β-lactamase activity in protein solutions (Metallo-β-lactamase L1) and in clinical bacterial cells, based on heat-flow changes derived from enzymatic hydrolysis of β-lactams using isothermal titration calorimetry. Results (1) The thermokinetic parameters of three antibiotics (penicillin G, cefazolin and imipenem) and the inhibition constant of an azolylthioacetamide inhibitor were determined using the calorimetric assay. The results from the calorimetric assays were consistent with the data from the spectrophotometric assay. (2) The values of heat change in the calorimetric assay using two clinical Escherichia coli strains correlated well with their antibiotic susceptibility results from the broth dilution experiment. The subtypes of β-lactamase were also determined in the calorimetric assay. Conclusions The ITC assay is a reliable and fast method to study β-lactamase enzyme kinetics and inhibition. It can also provide thermodynamic information on antibiotic hydrolysis, which has been taken advantage of in this work to study β-lactamase activity in two clinical Escherichia coli isolates. General significance As the first calorimetric study of β-lactamase activity, it may provide a new assay to assist biomedical validation of new β-lactamase inhibitors, and also has potential applications on rapid antibiotic susceptibility testing and screening β-lactamase producing bacteria.

Publisher URL: www.sciencedirect.com/science

DOI: S0304416517301368

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.