3 years ago

The Emptiness Problem for Valence Automata over Graph Monoids.

Georg Zetzsche

This work studies which storage mechanisms in automata permit decidability of the emptiness problem. The question is formalized using valence automata, an abstract model of automata in which the storage mechanism is given by a monoid. For each of a variety of storage mechanisms, one can choose a (typically infinite) monoid $M$ such that valence automata over $M$ are equivalent to (one-way) automata with this type of storage. In fact, many important storage mechanisms can be realized by monoids defined by finite graphs, called graph monoids. Examples include pushdown stacks, partially blind counters (which behave like Petri net places), blind counters (which may attain negative values), and combinations thereof.

Hence, we study for which graph monoids the emptiness problem for valence automata is decidable. A particular model realized by graph monoids is that of Petri nets with a pushdown stack. For these, decidability is a long-standing open question and we do not answer it here.

However, if one excludes subgraphs corresponding to this model, a characterization can be achieved. Moreover, we provide a description of those storage mechanisms for which decidability remains open. This leads to a model that naturally generalizes both pushdown Petri nets and the priority multicounter machines introduced by Reinhardt.

The cases that are proven decidable constitute a natural and apparently new extension of Petri nets with decidable reachability. It is finally shown that this model can be combined with another such extension by Atig and Ganty: We present a further decidability result that subsumes both of these Petri net extensions.

Publisher URL: http://arxiv.org/abs/1710.07528

DOI: arXiv:1710.07528v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.