3 years ago

Kernelization Lower Bounds for Finding Constant Size Subgraphs.

George B. Mertzios, André Nichterlein, Till Fluschnik

Kernelization is an important tool in parameterized algorithmics. The goal is to reduce the input instance of a parameterized problem in polynomial time to an equivalent instance of the same problem such that the size of the reduced instance only depends on the parameter and not on the size of the original instance. In this paper, we provide a first conceptual study on limits of kernelization for several polynomial-time solvable problems. For instance, we consider the problem of finding a triangle with negative sum of edge weights parameterized by the maximum degree of the input graph. We prove that a linear-time computable strict kernel of truly subcubic size for this problem violates the popular APSP-conjecture.

Publisher URL: http://arxiv.org/abs/1710.07601

DOI: arXiv:1710.07601v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.