3 years ago

The Complexity of Counting Surjective Homomorphisms and Compactions.

Jacob Focke, Leslie Ann Goldberg, Stanislav Zivny

A homomorphism from a graph G to a graph H is a function from the vertices of G to the vertices of H that preserves edges. A homomorphism is surjective if it uses all of the vertices of H and it is a compaction if it uses all of the vertices of H and all of the non-loop edges of H. Hell and Nesetril gave a complete characterisation of the complexity of deciding whether there is a homomorphism from an input graph G to a fixed graph H. A complete characterisation is not known for surjective homomorphisms or for compactions, though there are many interesting results. Dyer and Greenhill gave a complete characterisation of the complexity of counting homomorphisms from an input graph G to a fixed graph H. In this paper, we give a complete characterisation of the complexity of counting surjective homomorphisms from an input graph G to a fixed graph H and we also give a complete characterisation of the complexity of counting compactions from an input graph G to a fixed graph H.

Publisher URL: http://arxiv.org/abs/1706.08786

DOI: arXiv:1706.08786v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.