3 years ago

A novel family of Nb-doped Bi0.5Sr0.5FeO3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells

A novel family of Nb-doped Bi0.5Sr0.5FeO3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells
Cobalt-free provskite oxides Bi0.5Sr0.5Fe1−x Nb x O3−δ (BSFNx, x = 0.05, 0.10 and 0.15) were prepared and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In particular, the effects of Nb substitution on phase evolution, thermal expansion behavior and electrochemical performance were systematically investigated. The average thermal expansion coefficient (TEC) of BSFNx decreases from 13.3 × 10−6 K−1 at x = 0.05 to 12.6 × 10−6 K−1 at x = 0.15 within a temperature range of 50–800 °C. Among the BSFNx materials, Bi0.5Sr0.5Fe0.9Nb0.1O3−δ (BSFN0.10) oxide shows the best electrochemical performance. The polarization resistances (R p) of BSFN0.10 cathode on CGO electrolyte are 0.038, 0.075 and 0.156 Ω cm2 at 700, 650 and 600 °C, respectively. Meanwhile the maximum power densities of the anode-supported single cells are 1.28, 1.54 and 1.34 W cm−2 at 700 °C for BSFNx cathodes with x = 0.05, 0.10, and 0.15, respectively. Furthermore, the relationship study of oxygen partial pressure dependence on R p indicates that the oxygen reduction reaction (ORR) rate-limiting step is the oxygen adsorption-dissociation on the electrode surface. The desirable electrochemical performance demonstrates that BSFNx oxides are potential cathode materials for IT-SOFCs.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317313794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.