4 years ago

Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry

Low-Temperature Pd/Zeolite Passive NOx Adsorbers: Structure, Performance, and Adsorption Chemistry
Libor Kovarik, Yong Wang, János Szanyi, Yilin Wang, Feng Gao, Yang Zheng, Mark H. Engelhard
Pd/zeolite passive NOx adsorber (PNA) materials were prepared with solution ion-exchange between NH4/zeolites (Beta, ZSM-5, and SSZ-13) and PdCl2 solutions. The nature of Pd (dispersion, distribution, and oxidation states) in these materials was characterized with Na+ ion exchange, TEM imaging, CO titration with FTIR, and in situ XPS. The NOx trapping and release properties were tested using feeds with different compositions. It is concluded that multiple Pd species coexist in these materials: atomically dispersed Pd in the cationic sites of zeolites and PdO2 and PdO particles on the external surfaces. While Pd is largely atomically dispersed in ZSM-5, the small pore opening for SSZ-13 inhibits Pd diffusion such that the majority of Pd stays as external surface PdO2 clusters. NOx trapping and release are not simple chemisorption and desorption events but involve rather complex chemical reactions. In the absence of CO in the feed, cationic Pd(II) sites with oxygen ligands and PdO2 clusters are reduced by NO to Pd(I) and PdO clusters. These reduced sites are the primary NO adsorption sites. In the presence of H2O, the as-formed NO2 desorbs immediately. In the presence of CO in the feed, metallic Pd, “naked” Pd2+, and Pd+ sites are responsible for NO adsorption. For Pd adsorption sites with the same oxidation states but in different zeolite frameworks, NO binding energies are not expected to vary greatly. However, NO release temperatures do vary substantially with different zeolite structures. This indicates that NO transport within these materials plays an important role in determining release temperatures. Finally, some rational design principles for efficient PNA materials are suggested.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04312

DOI: 10.1021/acs.jpcc.7b04312

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.