5 years ago

Influence of iron species on integrated microbial fuel cell and electro-Fenton process treating landfill leachate

Influence of iron species on integrated microbial fuel cell and electro-Fenton process treating landfill leachate
MFC-based bioelectro-Fenton (BEF) system was examined in duplicate to deal with recalcitrant organics of mature landfill leachate pre-treated with partial nitritation-anammox process. The system performance was evaluated at various iron species (iron (II) sulfate and iron (III) chloride) and iron dosages (150, 300 and 500mgL−1) as Fenton catalyst. A simultaneous anolyte and catholyte COD removal efficiency of 71–76% and 77–81% occurred respectively, having glucose substrate (anolyte) and leachate (catholyte). Upon switching the system to 80% and then 100% real leachate as anolyte substrate affected the COD removal efficiency and CE, but no significant effect was noticed in terms of current density. A maximum current density of 1.7Am−2 was obtained throughout the experiment. Iron concentration of 300mgL−1 proved to be optimum dose; whereas, iron (II) catalyst showed slightly better efficiency than iron (III). The results demonstrated the potential of an MFC based BEF oxidation as sustainable and efficient route for simultaneous anodic and cathodic pollutant removal coupled with power production.

Publisher URL: www.sciencedirect.com/science

DOI: S1385894717311695

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.