3 years ago

Measurement and simulation of water-use by canola and camelina under cool-season conditions in California

The agricultural sector of California is one of the most diverse and economically valuable in the world, but is dominated by woody perennial, and annual warm-season crops, dependent on irrigation. These face potential problems from restrictions to irrigation water supply and climate change. Canola and camelina could be used to diversify cool-season cropping in the state, but the water use of these species in the region is poorly understood. In this study, both the total and temporal water use of canola and camelina under cool-season production conditions in California were investigated using field-based and computer modeling approaches. Total and temporal water-use of both species were found to be similar to what has been observed in other regions under cool-season conditions. Observed seasonal water uptake patterns also closely matched predictions by the Agricultural Production Systems Simulator (APSIM) model. These results inform the utilization of these species as new crops in California and also contribute to estimates of water use by these globally significant oilseeds under Mediterranean to arid climate conditions.

Publisher URL: www.sciencedirect.com/science

DOI: S0378377417303104

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.