3 years ago

Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities

Björn D. Lindahl, Karina E. Clemmensen, Julia Kyaschenko, Erik Karltun
Plant–soil interactions link ecosystem fertility and organic matter accumulation below ground. Soil microorganisms play a central role as mediators of these interactions, but mechanistic understanding is still largely lacking. Correlative data from a coniferous forest ecosystem support the hypothesis that interactions between fungal guilds play a central role in regulating organic matter accumulation in relation to fertility. With increasing ecosystem fertility, the proportion of saprotrophic basidiomycetes increased in deeper organic layers, at the expense of ectomycorrhizal fungal species. Saprotrophs correlated positively with the activity of oxidative enzymes, which in turn favoured organic matter turnover and nitrogen recycling to plants. Combined, our findings are consistent with a fungus-mediated feedback loop, which results in a negative correlation between ecosystem fertility and below-ground carbon storage. These findings call for a shift in focus from plant litter traits to fungal traits in explaining organic matter dynamics and ecosystem fertility in boreal forests.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/ele.12862

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.