3 years ago

Geomorphic evolution of a non-glaciated river catchment in Lesser Himalaya: Response to tectonics

The study discusses detail valley formation and sedimentation processes in the monsoon dominated non-glaciated catchment of the Ramganga river in the Lesser Himalaya. The geomorphic and sedimentological studies in this basin indicates phases of massive aggradation that was controlled mainly by channel bound processes and debris flows/landslides. The luminescence chronology of the fill sequences suggests that the valley filling occurred mainly in response to the enhanced monsoon after the Last Glacial Maxima (LGM), during Medieval Warm Period (MWP) and Little Ice Age (LIA). This phase is common in both glaciated and the non-glaciated catchments of Himalaya. The Ramganga River that flows through various tectonic structures of the Lesser Himalaya shows development of wide valleys with thick fill deposits in the fault zones. Chaukhutiya Fault (CF) and Binau-Bhikiyasain-Naurar Fault (BBNF) are the two main transverse faults where the evolved geomorphology pertains to their tectonic activity. The computed morphometric variables such as Ratio of valley floor width to valley height (Vf) and Stream Gradient Index (SL) show higher values in the transverse fault zones. Basin asymmetry vectors along the South Almora Thrust and BBNF are characterized by preferred stream migration in NE and SW direction suggesting BBNF with dip slip movement. Thick clay deposits at different sites along the Ramganga River resulting from blocking of the river, particularly along the BBNF, also point towards tectonically induced landslide and channel blockage. Later phase of tectonic activity, bracketed between 27 and 24 ka, is evident from deformed fluvial deposits in the form of folds and faults. Evidences of tectonic activity in the form of soft sediment deformation structures (SSDS) generic to seismic activity in layers comprising alternation of clay and sand are observed in the Himalayan Frontal Thrust (HFT) zone. The diagnostic features such as dykes, faults and folds suggests that the shaking event took place between 38 ka and 30 ka.

Publisher URL: www.sciencedirect.com/science

DOI: S1040618216308382

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.