3 years ago

Loss Induced Maximum Power Transfer in Distribution Networks.

Malcolm McCulloch, Dimitra Apostolopoulou, Matthew Deakin, Thomas Morstyn

In this paper, the power flow solution of the two bus network is used to analytically characterise maximum power transfer limits of distribution networks, when subject to both thermal and voltage constraints. Traditional analytic methods are shown to reach contradictory conclusions on the suitability of reactive power for increasing power transfer. Therefore, a more rigorous analysis is undertaken, yielding two solutions, both fully characterised by losses. The first is the well-known thermal limit. The second we define as the `marginal loss-induced maximum power transfer limit'. This is a point at which the marginal increases in losses are greater than increases in generated power. The solution is parametrised in terms of the ratio of resistive to reactive impedance, and yields the reactive power required. The accuracy and existence of these solutions are investigated using the IEEE 34 bus distribution test feeder, and show good agreement with the two bus approximation. The work has implications for the analysis of reactive power interventions in distribution networks, and for the optimal sizing of distributed generation.

Publisher URL: http://arxiv.org/abs/1710.07787

DOI: arXiv:1710.07787v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.