3 years ago

Geometric Computing with Chain Complexes: Design and Features of a Julia Package.

Giulio Martella, Francesco Furiani, Alberto Paoluzzi

Geometric computing with chain complexes allows for the computation of the whole chain of linear spaces and (co)boundary operators generated by a space decomposition into a cell complex. The space decomposition is stored and handled with LAR (Linear Algebraic Representation), i.e. with sparse integer arrays, and allows for using cells of a very general type, even non convex and with internal holes. In this paper we discuss the features and the merits of this approach, and describe the goals and the implementation of a software package aiming at providing for simple and efficient computational support of geometric computing with any kind of meshes, using linear algebra tools with sparse matrices. The library is being written in Julia, the novel efficient and parallel language for scientific computing. This software, that is being ported on hybrid architectures (CPU+GPU) of last generation, is yet under development.

Publisher URL: http://arxiv.org/abs/1710.07819

DOI: arXiv:1710.07819v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.