3 years ago

Natural Language Aggregate Query over RDF Data.

Luting Ye, Xin Hu, Depeng Dang, Yingting Yao

Natural language question-answering over RDF data has received widespread attention. Although there have been several studies that have dealt with a small number of aggregate queries, they have many restrictions (i.e., interactive information, controlled question or query template). Thus far, there has been no natural language querying mechanism that can process general aggregate queries over RDF data. Therefore, we propose a framework called NLAQ (Natural Language Aggregate Query). First, we propose a novel algorithm to automatically understand a users query intention, which mainly contains semantic relations and aggregations. Second, to build a better bridge between the query intention and RDF data, we propose an extended paraphrase dictionary ED to obtain more candidate mappings for semantic relations, and we introduce a predicate-type adjacent set PT to filter out inappropriate candidate mapping combinations in semantic relations and basic graph patterns. Third, we design a suitable translation plan for each aggregate category and effectively distinguish whether an aggregate item is numeric or not, which will greatly affect the aggregate result. Finally, we conduct extensive experiments over real datasets (QALD benchmark and DBpedia), and the experimental results demonstrate that our solution is effective.

Publisher URL: http://arxiv.org/abs/1710.07891

DOI: arXiv:1710.07891v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.