3 years ago

Surface functionalization-specific binding of coagulation factors by zinc oxide nanoparticles delays coagulation time and reduces thrombin generation potential <i>in vitro</i>

Jayoung Jeong, Seungtae Chung, Ayoung Jung, Wan-Seob Cho, Youngju Han, Hangsik Roh, Jihyun Seok, Jun-Young Yang, Jae-Min Oh, Soojung Sohn, Seonyeong Park, Jiyeong Bae

by Jun-Young Yang, Jiyeong Bae, Ayoung Jung, Seonyeong Park, Seungtae Chung, Jihyun Seok, Hangsik Roh, Youngju Han, Jae-Min Oh, Soojung Sohn, Jayoung Jeong, Wan-Seob Cho

Zinc oxide nanoparticles (ZnO NPs) have many biomedical applications such as chemotherapy agents, vaccine adjuvants, and biosensors but its hemocompatibility is still poorly understood, especially in the event of direct contact of NPs with blood components. Here, we investigated the impact of size and surface functional groups on the platelet homeostasis. ZnO NPs were synthesized in two different sizes (20 and 100 nm) and with three different functional surface groups (pristine, citrate, and L-serine). ZnO NPs were incubated with plasma collected from healthy rats to evaluate the coagulation time, kinetics of thrombin generation, and profile of levels of coagulation factors in the supernatant and coronated onto the ZnO NPs. Measurements of plasma coagulation time showed that all types of ZnO NPs prolonged both active partial thromboplastin time and prothrombin time in a dose-dependent manner but there was no size- or surface functionalization-specific pattern. The kinetics data of thrombin generation showed that ZnO NPs reduced the thrombin generation potential with functionalization-specificity in the order of pristine > citrate > L-serine but there was no size-specificity. The profile of levels of coagulation factors in the supernatant and coronated onto the ZnO NPs after incubation of platelet-poor plasma with ZnO NPs showed that ZnO NPs reduced the levels of coagulation factors in the supernatant with functionalization-specificity. Interestingly, the pattern of coagulation factors in the supernatant was consistent with the levels of coagulation factors adsorbed onto the NPs, which might imply that ZnO NPs simply adsorb coagulation factors rather than stimulating these factors. The reduced levels of coagulation factors in the supernatant were consistent with the delayed coagulation time and reduced potential for thrombin generation, which imply that the adsorbed coagulation factors are not functional.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0181634

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.