Deterministic Rendezvous at a Node of Agents with Arbitrary Velocities.
We consider the task of rendezvous in networks modeled as undirected graphs. Two mobile agents with different labels, starting at different nodes of an anonymous graph, have to meet. This task has been considered in the literature under two alternative scenarios: weak and strong. Under the weak scenario, agents may meet either at a node or inside an edge. Under the strong scenario, they have to meet at a node, and they do not even notice meetings inside an edge. Rendezvous algorithms under the strong scenario are known for synchronous agents. For asynchronous agents, rendezvous under the strong scenario is impossible even in the two-node graph, and hence only algorithms under the weak scenario were constructed. In this paper we show that rendezvous under the strong scenario is possible for agents with restricted asynchrony: agents have the same measure of time but the adversary can arbitrarily impose the speed of traversing each edge by each of the agents. We construct a deterministic rendezvous algorithm for such agents, working in time polynomial in the size of the graph, in the length of the smaller label, and in the largest edge traversal time.
Publisher URL: http://arxiv.org/abs/1710.08291
DOI: arXiv:1710.08291v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.