3 years ago

Attending to All Mention Pairs for Full Abstract Biological Relation Extraction.

Andrew McCallum, Emma Strubell, Patrick Verga, Ofer Shai

Most work in relation extraction forms a prediction by looking at a short span of text within a single sentence containing a single entity pair mention. However, many relation types, particularly in biomedical text, are expressed across sentences or require a large context to disambiguate. We propose a model to consider all mention and entity pairs simultaneously in order to make a prediction. We encode full paper abstracts using an efficient self-attention encoder and form pairwise predictions between all mentions with a bi-affine operation. An entity-pair wise pooling aggregates mention pair scores to make a final prediction while alleviating training noise by performing within document multi-instance learning. We improve our model's performance by jointly training the model to predict named entities and adding an additional corpus of weakly labeled data. We demonstrate our model's effectiveness by achieving the state of the art on the Biocreative V Chemical Disease Relation dataset for models without KB resources, outperforming ensembles of models which use hand-crafted features and additional linguistic resources.

Publisher URL: http://arxiv.org/abs/1710.08312

DOI: arXiv:1710.08312v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.