3 years ago

Performance Bounds of Concatenated Polar Coding Schemes.

Dina Goldin, David Burshtein

A concatenated coding scheme over binary memoryless symmetric (BMS) channels using a polarization transformation followed by outer sub-codes is analyzed. Achievable error exponents and upper bounds on the error rate are derived. The first bound is obtained using outer codes which are typical linear codes from the ensemble of parity check matrices whose elements are chosen independently and uniformly. As a byproduct of this bound, it determines the required rate split of the total rate to the rates of the outer codes. A lower bound on the error exponent that holds for all BMS channels with a given capacity is then derived. Improved bounds and approximations for finite blocklength codes using channel dispersions (normal approximation), as well as converse and approximate converse results, are also obtained. The bounds are compared to actual simulation results from the literature. For the cases considered, when transmitting over the binary input additive white Gaussian noise channel, there was only a small gap between the normal approximation prediction and the actual error rate of concatenated BCH-polar codes.

Publisher URL: http://arxiv.org/abs/1710.08379

DOI: arXiv:1710.08379v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.